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Abstract

Individuals are often exposed to information they did not actively seek, such as news

shared by others, raising the question of how such information environments shape

personal information choices. This paper studies how expectations of external infor-

mation influence agents’ choices of news bias. Extending a standard model of Bayesian

learning from biased sources to account for the anticipation of additional information,

we show that expected information critically impacts news bias choices. We charac-

terize the optimal learning strategy depending on the decision maker’s prior belief and

the structure of the additional information, offering a novel explanation for why people

often consume like-minded media news while also engaging with opposing ones. Ap-

plying this to social contexts, we find that highly uncertain agents tend to coordinate

on the same news bias, whereas relatively certain individuals may opt for opposing

ones. We also shed light on how to foster information acquisition among agents with

more extreme beliefs.
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1 Introduction

Concerns that the Internet may intensify ideological segregation have been greatly empha-

sized (Sunstein 2001; Bishop 2009). In light of this, many papers have explored potential

mechanisms behind eco-chambers, characterized by individuals segregating with like-minded

peers, who influence their beliefs in a non rational manner (Levy and Razin 2019). How-

ever, empirical evidence on the prevalence of online echo-chambers is mixed. While social

media often promotes exposure to like-minded information, extreme echo-chamber patterns

are rare, and few people have heavily skewed information diets (Gentzkow and Shapiro 2011,

Bakshy et al. 2015, Flaxman et al. 2016, Boxell et al. 2017, Dubois and Blank 2018, Nyhan

et al. 2023). Both online and offline, people are regularly exposed to information shared by

others (Wojcieszak and Mutz 2009, Minozzi et al. 2020). This raises the question of how

people’s information environments affect their choice of news bias.

Most papers studying information choices either assume agents either have full control

over the information that they process or no control at all. In this paper, we study the effect

of expecting information beyond one’s control on agents’ choices of news bias. By adding the

expectation of additional information to a standard Bayesian learning model, we show that

agents choices of news bias are highly dependent on anticipated external information. Our

model captures well-documented patterns in news consumption, including the tendency to

consume both like-minded and opposing media or to align choices of news bias with peers.

In our framework, a Bayesian decision-maker (DM) selects an action, left or right, to

match an unknown true state, such as voting for the correct policy. Prior to making this

decision, the DM can acquire information from one of two news sources (signals), each biased

towards a particular action –i.e., left- or right-biased. After choosing a source but before

acting, the DM also receives additional information from an independent exogenous source,

of known structure, such as information shared by others.1

In this setting, the DM’s problem can be framed as assessing the value of further learning

from each news source at each of the beliefs she expects the exogenous source to take her. At

more uncertain beliefs further information is more valuable, as choosing the wrong action is

considered more likely. Hence, the DM’s preferences for news at more frequent and uncertain

beliefs tend to be more important in determining her choice of source.

First, we show that the mere expectation of receiving additional information significantly

shapes optimal information choices. As long as neither source is objectively better than the

other (i.e., yields higher expected utility across all priors), there always exists an independent

anticipated signal that can alter the DM’s choice between sources, regardless of her prior.

1By independent sources we refer to independent signals, conditional on the state.
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This holds broadly, for sources with finite messages in finite-state, finite-action settings.

For news consumption, this implies that expecting information, such as incidental political

insights from peers, can be sufficient to affect media choices. It also means that beliefs alone

cannot fully predict agents’ learning choices when additional information is expected.

Second, our model rationalizes both own-biased learning (learning from sources biased

towards the state one deems more likely) and opposite-biased learning (choosing sources

biased towards the state one deems less likely). This is consistent with empirical findings

showing that although individuals frequently consume like-minded news, many also seek

sources with opposing views (e.g., see Gentzkow and Shapiro 2011). The optimality of one

learning heuristic over the other depends on both prior beliefs and the nature of anticipated

additional information. In particular, the DM’s optimal strategy is characterized by intervals

of priors, each corresponding to a different source choice, where both the source selected and

interval thresholds depend critically on the expected additional information.

A relatively uncertain DM expecting additional information of similar quality to her news

sources will optimally choose a source with the same bias as the additional information.

Namely, if she anticipates receiving left-biased information from peers, she chooses left-

biased news too, and similarly for right-biased information.2 This offers a rationale for

certain levels of ideological homophily observed in social media friend networks (Bakshy

et al. 2015, Barberá et al. 2015), suggesting it may stem not only from a preference for like-

minded individuals but also from optimal learning choices. Friends with sufficiently uncertain

political views, even if leaning towards different directions, may choose media with the same

bias (either left-biased or right-biased) just for learning optimally, which in turn makes it

more likely that people within the same social circle end up sharing similar views.

A DM who is extremely sure about the state is indifferent between news sources, since

none can change her action; while if she is very sure but can still learn something valuable,

she chooses own-biased learning. The prior where she shifts from indifference to strictly pre-

ferring own-biased news varies depending on the type of expected additional information. In

particular, an extreme agent might start seeking information as the anticipated information

becomes of better quality or more credible at sending information that contradicts her prior.

These insights can be used to understand how to incentivize information acquisition. For

instance, to promote information seeking by COVID vaccine skeptics, a policy maker might

want to prioritize improving the perceived accuracy of informational campaigns at identify-

ing when the vaccine does not work as opposed to when it does. Or, a media outlet trying to

2Instead, when the additional information Blackwell dominates the sources available to the DM (better
quality), the DM is indifferent between sources; and if it is Blackwell dominated (worse quality), the DM’s
incentives resemble a situation without additional information and she prefers own-biased learning.
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penetrate the market of extreme agents who are not consuming any news, may want to offer

free content, since the expectation of receiving it can incentivize some to acquire information.

Under mild conditions on the additional information, a moderately certain DM finds

it optimal to choose opposite-biased learning. For instance, a moderately left-leaning voter

might, expecting left-biased information from her social group, still choose right-biased news.

Studying how the threshold that separates the region of very certain priors at which the

DM prefers own-biased learning from where she prefers opposite-biased learning, we show

tha there is a range of priors where the DM finds it optimal to mismatch the bias of the

exogenous source. For instance, expecting right-biased information, a DM might choose left-

biased news, and vice versa. We apply this result to understand the optimal learning choices

of two teams, who, together, need to decide whether to adopt a new technology. Even if

both teams believe that the technology has potential to improve the company’s outcomes,

they may behave as advocates of opposite alternatives (Dewatripont and Tirole 1999).

Finally, using these patterns as its main building blocks, we fully characterize the DM’s

optimal learning strategy. We also discuss several applications of our results, which are

relevant in other learning environments where agents only have partial control over the

information they receive. Similar to voters who choose news sources yet cannot fully filter

information shared by their social networks, doctors need to select diagnostic tests while

expecting to observe patient symptoms in the future, and CEOs design their market research

anticipating additional insights from competitors’ market outcomes.

1.1 Illustrative Example

Ann must decide whether to vote for the left or right policy tomorrow. Voting for the correct

policy gives her a payoff of 1 util, and voting incorrectly gives 0. She believes the left policy

is correct with probability 0.6, making her left-biased.

Today, Ann can choose to consult one of two news sources, each reporting either “left”

or “right”. One source is left-biased and the other is right-biased. If the correct policy is

left, the left-biased source reports “left” with 80% probability and “right” only with 50%

probability if the correct policy is right. Similarly, the right-biased source reports “right”

with 80% probability right is the correct policy and “left” with 50% probability when left

is. Thus, each source matches the correct policy more often when it aligns with its bias:

the left-biased source reports more accurately for the left policy, and the right-biased for the

right policy. However, a biased source contradicting its typical tendency (e.g., the left-biased

source says “right”) is stronger evidence about the correct policy.

Ann understands how the two news sources generate their messages. Therefore, she
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chooses the source that maximizes the value of her vote tomorrow, given her prior about the

correct policy and the way sources report in each state. If she made the choice in isolation,

the left-biased source would be her optimal choice. We call this own-biased learning.

However, Ann does not learn in isolation. She knows that her friend Bob will share news

with her before the election and expects Bob to share information from the right-biased

source. Assuming that, conditional on the correct policy, Bob’s report is independent of the

report Ann would receive, what would be Ann’s optimal choice of news bias?3

If Bob reports “left”, Ann becomes quite confident (79%) that the correct policy is left,

and further information that she can choose will not change her vote. But if he reports

“right”, her beliefs shift towards the right policy being correct (52%), though she remains

uncertain enough that further information is valuable, since it can affect her vote. While at

the first (left-biased) interim belief she is indifferent between any news source, at the latter

(right-biased) interim belief she would prefer the right-biased source. All in all, Ann finds

it optimal to select the right-biased source today. Since her prior is left-biased, this means

that she chooses opposite-biased learning.

This simple example showcases how the expectation of future information can alter opti-

mal learning decisions. It breaks with the standard prediction from the literature on Bayesian

learning, which suggests that agents will generally prefer sources biased toward the state they

initially consider more likely (own-biased learning).

1.2 Literature Review

This paper contributes to the literature on optimal Bayesian learning from biased sources.

Papers showing the optimality of choosing an own-biased source for a Bayesian agent are

Calvert 1985, Meyer 1991, Suen 2004, Burke 2008, Gentzkow and Shapiro 2006 and Mul-

lainathan and Shleifer 2005. Our predictions are consistent with their finding when no

additional information is expected. But our results show that with additional information

opposite-biased learning can also be optimal. In contrast, Oliveros and Várdy (2015) find

that voters who can abstain may prefer unbiased sources. Instead, we focus on two actions.

Recent work using dynamic models demonstrates that it can be optimal for a Bayesian

agent to multi-home or learn from opposite-biased sources (Che and Mierendorff 2019, Nikan-

drova and Pancs 2018, Mayskaya 2024). In these models, an agent faces an optimal stopping

problem with costly information acquisition. There, opposite-biased learning is chosen due

to a trade-off between accuracy and delay. By offering stronger evidence of the state deemed

more likely, opposite-biased learning can reduce future information costs for highly uncertain

3If reading the same type of news implies getting the same report, Ann’s optimal source choice is trivial.
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agents, who require a higher rise confidence to stop acquiring information. In these models

the prior belief fully determines the optimal learning strategy. In our model additional in-

formation plays a critical role in determining the DM’s information choice at any prior and

in explaining the optimality of opposite-biased learning.

Gossner et al. (2021) and Liang et al. (2022) study the effect of exogenously manipulating

attention of a DM who dynamically learns about the value of different items. Our model is

different in several ways: (i) their DM chooses among signals about multiple independent

states, while ours chooses among signals about a binary state, (ii) they consider an optimal

stopping problem, while our problem has a given stopping time, (iii) they study the effect

of manipulating attention at a given point in time on consequent learning choices, while we

study how expected manipulations in the future affect current learning choices.

Recent developments in the literature on the value of signals, building on Blackwell et al.

(1951), are conceptually related. Börgers et al. (2013) identify conditions under which certain

signals increase or decrease each other’s value, regardless of the decision problem. Brooks

et al. (2023) develop a signal ordering robust to the presence of additional signals and decision

problem. Our analysis focuses on the choice between two signals of comparable informative-

ness –choices depend on the DM’s prior and the structure of additional information– , while

they study signal dominance across all decision problems. Therefore, their analysis restricts

to correlated signals while we focus on independent ones (conditional on the state).

The information design literature also recently considers how the value of one signal struc-

ture changes in the presence of another independent signal. Laclau et al. (2017); Kolotilin

et al. (2017) and Dworczak and Pavan (2022) study the problem of a persuader who is uncer-

tain about the receiver’s private information. Bergemann et al. (2018) consider a data seller

offering a menu of signals to screen buyers based on their beliefs. While in these models a

DM chooses information –i.e., a signal for the receiver or a menu for buyers– taking into ac-

count posterior distributions, our work differs in the DM’s goal: selecting a state-dependent

action rather than persuading of a state-independent action or screening agents.

2 Learning Model

A Bayesian decision-maker (DM) must choose an action, Ax ∈ {AL, AR}, trying to match

an unknown state θ ∈ {L,R}. Her payoff is 1 if the chosen action matches the state (x = θ)

and 0 otherwise. Her prior is denoted by p0 ∈ (0, 1), which refers to the probability of state

being R. Before taking action, the DM obtains information from two sources: one chosen,

σc, and other given exogenously, σe. The first represents the information she can actively

select and the second any additional information she expects to receive beyond her control.
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Sources of information. A source σx can send two possible messages, l or r, and is

characterized by two parameters: the probability of sending message l when the state is L,

πx(l|L), and the probability of sending message r when the state is R, πx(r|R). Formally, a

news source is a binary signal structure. This is illustrated in Table 1 below.

State/Message l r

θ = L πx(l|L) 1− πx(l|L)

θ = R 1− πx(r|R) πx(r|R)

Table 1: Signal structure of a source of information σx

Without loss of generality we assume l is the message that updates the DM’s prior towards

believing state L is more likely, i.e., πx(l|L) ≥ 1 − πx(r|R). A source is uninformative if

πx(l|L) = 1− πx(r|R), fully revealing about state R if πx(l|L) = 1 and fully revealing about

state L if πx(r|R) = 1. To avoid uninteresting limit cases, we restrict attention to sources

with πx(l|L) > 1− πx(r|R) and πx(l|L) < 1, πx(r|R) < 1.

Since we are interested in studying choices among biased sources, we formalize this

concept within our framework. The binary structure offers a clear interpretation of bias,

as explained below. This is in line with other approaches to model biasedness (Che and

Mierendorff 2019), high-bar or low-bar experiments (Gans 2023) or information skewness

(Masatlioglu et al. 2023), which also focus on binary signals.

Definition 1 For any source σx, characterized by πx(l|L), and πx(r|R):

i) The source is right-biased if πx(l|L) < πx(r|R),

ii) The source is left-biased if πx(l|L) > πx(r|R),

iii) The source is unbiased if πx(l|L) = πx(r|R).

A biased source is more likely to match the true state when it aligns with its bias; while

an unbiased source matches the state with equal probability, regardless of the true state.

From the perspective of a DM with a neutral prior, a right-biased source is expected to send

a right message more often than a left message, and similarly, a left-biased source is more

likely to send a left message than a right message. Furthermore, she would update her prior

further upon receiving a left message from the right-biased source or a right message from

the left-biased source than when receiving a message that agrees with the source’s bias.
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To isolate the effect of bias from that of informativeness, we consider a choice set contain-

ing two symmetric signals. The following definition formalizes the concept of symmetry.4

Definition 2 Two sources σx and σy are symmetric if πx(l|L) = πy(r|R) and πx(r|R) =

πy(l|L).

When two sources are symmetric, the probability that their messages match the state is

the same, conditional on the state either aligning or misaligning with their bias. However,

their accuracy might differ between aligned and misaligned states. For two symmetric biased

sources, when the both states are equally likely, the left-biased source sends message l (r)

with the same probability as the right-biased source sends message r (l). If two symmetric

sources are unbiased, they are effectively the same source.

We assume that signals are independent conditional on the state. Therefore, if the DM’s

choice of source depends on σe, it is not due to correlation. While in reality messages from

different sources may exhibit correlation beyond the state, we abstract from this to isolate

the effect of other features of the sources’ structure, such as bias and informativeness.

Timing, information and beliefs. First, Nature draws a state θ. Then, the DM chooses

among two symmetric biased sources, where σR denotes the right-biased source and σL the

left-biased. After choosing her source, σc ∈ {σR, σL}, the DM observes two (independent)

messages: one from the chosen source σc, and one from the exogenous source, σe. Finally,

after updating her beliefs with the information received from each source, the DM chooses

an action Ax and her payoff is realized.

Nature

draws θ
DM chooses AxDM chooses σc

DM sees σe and

σc’s messages

Figure 1: Timing of the learning problem

When selecting σc, the DM knows the σe’s structure –i.e., the probability of each message

given the state–, but not the actual message. She also knows she will observe this message

after selecting σc but before choosing Ax. Our analysis is robust to other timing assumptions

as long as these two aspects are maintained. If the DM observed σe’s message before selecting

a source, she would simply update her belief and choose as if learning in isolation. Conversely,

if σe’s message arrived after taking action, it would be irrelevant for decision-making and thus

4Note the difference with respect to Masatlioglu et al. (2023)’s definition of symmetry, which refers to
unbiasedness in our language.
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not affect her source choice. In our framework, however, since the DM receives the exogenous

information after selecting a source and before choosing an action, her informational choice

depends on how well σc complements the expected information from σe.
5

We denote the updated belief of the DM after observing message s from source σx alone

by p(sx) and the updated belief after observing message s from source σx and message m

from source σy by p(sx,my). Both of them refer to the probability that the state is R.

2.1 Preliminaries

Before anakyzing the DM’s optimal learning strategy in Section 3, we discuss how to study

the DM’s problem. One approach is to treat the chosen information source and the exogenous

source as a bundle, which together form one aggregate source with four possible messages:

(ll, lr, rl, rr). In that case, the DM chooses between two such bundles, each containing a

fixed exogenous component, i.e. (σL, σe) or (σ
R, σe). However, this complicates the analysis

of how different features of the exogenous source impact the optimal choice of source.

To address this, we decompose the DM’s problem in two steps. First, we calculate all

possible posteriors resulting from the DM observing messages solely from the exogenous

source. We refer to these posteriors as interim posteriors. Second, we assess the difference in

expected value between the left- and right-biased sources at each of those interim posteriors,

without the presence of any additional information. This step captures the extent to which

the DM prefers one biased source over the other in isolation, akin to analyses in the literature

that exclude exogenous information.

Thus, the DM’s problem can be viewed as computing a weighted average of the belief-

dependent preferences over the left- and right-biased source across all possible interim pos-

teriors. The weights correspond to the probabilities of each interim posterior, induced by

the exogenous source. Observation 1 below formalizes this perspective.

Observation 1 For any exogenous source σe,

EU(σL, σe|p0)−EU(σR, σe|p0) ≥ 0 ⇐⇒
∑

s∈{l,r}

P(se|p0)
(
EU(σL|p(se))−EU(σR|p(se))

)
≥ 0,

where P(se|p0) = p0π
e(se|R) + (1− p0)π

e(se|L) is the probability that σe sends s, given prior

p0. EU(·, ·|p) is the expected utility, from an ex-ante perspective, of receiving information

from a bundle of sources given prior p. EU(·|p) is the ex-ante expected utility of receiving

information from a single source, without expecting further information, given prior p.

5Through the lens of Börgers et al. (2013)’s framework all the signals in our environment are substitutes.
However, in our specific decision problem, a signal can lower or increase the marginal value of another.
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This approach can be easily represented graphically in the binary case.6 Figure 2 below

illustrates the ex-ante expected utility of receiving information from two symmetrically biased

sources. The red curve represents the expected utility of receiving a message from a right-

biased source σR at different prior beliefs (x-axis), absent of an exogenous source. The blue

curve corresponds to its symmetric left-biased source σL. The gray curve shows the expected

utility in the absence of any information.

EU

p

EU(σL|p)

EU(σR|p)
1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.40.30.20.1

Figure 2: Expected utility of two symmetric signals, σL and σR

Both the red and blue curves consist of three linear segments. The two outer segments

correspond to priors where the DM’s action is unaffected by the source’s message. At these

priors, she chooses as if she received no information. For priors near 0, the DM is so confident

that the state is L that she always chooses AL, regardless of the source’s message. Similarly,

for priors near 1, the DM is so confidence that the state is R that she always chooses AR.

The middle segment corresponds to priors where the DM is uncertain about the best action

to take and follows the source’s recommendation by choosing AL if the message is l and AR

if the message is r. Moreover, the gain in expected utility due to information is larger for

more uncertain priors. This can be seen by comparing the blue and red curves with the gray

one. Intuitively, information is more valuable when the DM is more unsure about what is

the best action to take. All of this is true for any binary signal.

Since the sources are symmetric, the left-biased source is comparatively more accurate

when the true state is L. Therefore, if the DM finds L more likely according to her prior,

she gets weakly greater expected utility from choosing the left-biased source. Similarly, if

the DM finds R more likely, the right-biased source provides higher expected utility. This

goes along with existing literature showing that Bayesian agents prefer learning from sources

6Although we focus on binary signals and two states, this perspective of taking weighted averages over
posteriors is easily generalized to multiple states and more complex signals.
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biased toward the state they deem more likely (own-biased learning).

The violet curve in Figure 3 represents the difference in value between the left- and right-

biased sources in Figure 2, without any additional information, for various beliefs of the

DM. A similar graph would result from any pair of binary sources. In the absence of the

exogenous source, the DM will optimally choose σL at priors where the curve is above 0 and

σR at priors where it is below 0. Consistent with the principle of own-biased learning, the

curve takes weakly positive values when the DM assigns higher probability to state L and

weakly negative values when she favors state R. This graph, together with Observation 1,

can serve as a useful tool for evaluating the expected difference in value between the left-

and right-biased sources when information from an exogenous source is expected.

Since the DM is Bayesian, the expectation of her interim posteriors must equal her prior

belief. In the case of a binary exogenous source, one interim belief will lie weakly to the left

of the prior, while the other will lie weakly to the right. The probability of each interim

belief is proportional to its relative distance from the prior. Consequently, the difference in

expected value between the left- and right-biased sources, when expecting information from

σe, corresponds to the height at which the DM’s prior intersects the segment connecting the

value of the violet curve at each of the two interim posteriors.

EU(σL|p)− EU(σR|p)

p

−0.1

0

0.1

10.90.80.70.60.50.40.30.20.1

p0p(le) p(re)

Figure 3: Example where σe changes DM’s optimal choice of source

For example, consider a DM with a prior p0 just below 0.5 and an exogenous source

which results in interim posteriors p(le) when it sends the left message and p(re) when it

sends the right message, as illustrated in Figure 3. To calculate the weighted average of the

sources’ relative values across these interim posteriors, one can draw a line connecting the

curve at each posterior. The height of this line at the prior, represented by a blue dot, is the

expected difference in value between the left- and right-biased sources, given the expectation

of information from the exogenous source. In this case, the blue dot lies below 0, meaning

that the right-biased source, σR, provides more value to the DM.

Although the DM considers state L more likely than R and would choose the left-biased
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source without any additional information (own-biased learning), expecting exogenous infor-

mation makes it optimal for the left-biased DM to choose the right-biased source (opposite-

biased learning). Using our framework, it is easy to show that the expectation of information

in the future can reverse the DM’s optimal choice of source, even when this information is

independent conditional on the state.7 Unlike in standard models of optimal learning from

biased sources, the prior alone no longer predicts the DM’s optimal choice of source.

Proposition 1 below illustrates this point. It shows that, regardless if the DM’s prior be-

lief, expected independent information can always make one source optimal over another, as

long as that source is optimal for at least one prior. This implies that exogenous information

can change the DM’s informational choice for any non-trivial choice between sources.8

Proposition 1 Fix any two sources, σx and σy. If there exists a belief, p, s.t.

EU(σx|p) > EU(σy|p), then, ∀p0 ∈ (0, 1), ∃σe s.t. EU(σx, σe|p0) > EU(σy, σe|p0)

The proof, relegated to the appendix, can be extended to signals with non-binary message

spaces and more general action and state spaces (see note in the appendix).

As explained in Observation 1, the DM understands that the exogenous source can lead

to different interim posteriors, where further information (of her choice) may have different

value. At very certain beliefs, additional information is less valuable because the DM assigns

a low probability to choosing the wrong action. However, at more uncertain beliefs, further

information becomes highly valuable. Therefore, the DM’s preference for information at

these uncertain beliefs plays a critical role in her choice of source.

This insight underpins the proof of Proposition 1. The most extreme example of an

exogenous source that can reverse the DM’s informational choice is one that either makes

the DM fully certain of the state (where further information has no value) or places her at an

interim posterior where she strictly prefers σx. Given such exogenous source, the DM prefers

σx from an ex-ante perspective because, at full certainty, she is indifferent between sources,

and otherwise, she strictly prefers σx. While this is a convenient extreme case, many other

exogenous sources can similarly cause preference reversal.

This result highlights the importance of accounting for information beyond the DM’s

control when analyzing problems of information choice, as such exogenous information can

significantly alter the DM’s informational preferences. When the DM anticipates receiving

exogenous information in the future, her prior alone does not fully determine her choice

of information source. Instead, different features of the expected exogenous information

7When correlation between σe and the sources in the DM’s choice set is allowed, finding σe that reverses
the preferences is even easier. For instance, making σe fully correlated with the originally optimal source.

8If a source is less valuable for all priors, no prior will ever find it optimal. Therefore, the choice is trivial.
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affect the DM’s optimal learning strategy in distinct ways. Nevertheless, the prior remains

a critical determinant of the DM’s choice of source. Crucially, both the DM’s prior and the

structure of the exogenous information jointly dictate her optimal selection of information.

The next example illustrates how the DM’s prior and the structure of the exogenous

source interact to determine her learning choices. Many insights from this example will

extend to the full characterization of the DM’s optimal strategy, as reflected in Section 3.

2.2 Illustrative Example – Continuation

Consider again Ann choosing between two symmetric news sources: a left-biased, σL and

a right-biased source σR, where πL(l|L) = πR(r|R) = 0.8 and πL(r|R) = πR(l|L) = 0.5.

Rather than focusing on her choice for a given prior, we now analyze how her learning

strategy varies with her prior.

First, consistent with previous literature and the analysis above, when Ann does not

expect any additional information, she weakly prefers own-biased learning. As shown in

Figure 4, she is indifferent between sources when her prior assigns more than 5
7
probability

to one policy. That is because for such priors no report from any of the available news sources

would alter her vote. For priors within the intermediate range, Ann prefers the source biased

towards the policy she deems more likely to be correct (own-biased learning).

p0

0 12
7

1
2

5
7

EU(σL|p0) = EU(σR|p0)

EU(σL|p0) > EU(σR|p0)

EU(σL|p0) < EU(σR|p0)

Figure 4: Optimal choice of signal in isolation
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Figure 5: Optimal source choice, expecting an additional message from a right-biased source

Next, suppose Ann expects Bob to share news with her. In line with Proposition 1,

this may affect the news she reads. Her optimal strategy now depends more intricately on
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Figure 6: Optimal source choice, expecting an additional message from a left-biased source

her prior, partitioning it into six adjacent, non-symmetric intervals. The structure of Bob’s

information also plays a critical role in shaping her informational decision. Figures 5 and 6

illustrate her optimal learning choices under the expectation that Bob will share right-biased

or left-biased news, respectively.

Recall from Observation 1 that Ann’s problem can be broken down as follows. She first

considers the interim posterior beliefs induced by each possible report from Bob. She then

evaluates the value of consulting each news source at those interim posteriors. Finally, she

weights these values by the probability of reaching each posterior. We will see how this type

of reasoning will be helpful to understand Ann’s behavior at each region of priors.

For very certain priors, Ann is indifferent between sources because no combination of

reports (from her and Bob’s source) can change her vote. In a slightly less certain range,

Bob’s information alone cannot affect what policy she considers more likely to be correct, but

certain combinations of messages from both sources can. In this range, additional learning

(beyond Bob’s information) is valuable, and own-biased learning is optimal from the ex ante

perspective, since her interim beliefs are still biased towards the same policy as her prior.

When Ann becomes more uncertain, her problem is more difficult. At these priors, Bob’s

report alone may shift her belief about the correct policy, making her preferences for news

sources differ across interim posteriors. Her optimal choice thus depends on two factors: i)

how uncertain she is at each interim posterior, which determines the value of further learning,

and ii) the probability she assigns to each posterior. Our earlier example illustrates this:

Ann’s prior was left-biased (p0 = 0.4), and, expecting right-biased news from Bob, she finds

it optimal to choose the right-biased source herself, engaging in opposite-biased learning.

The last remark from this example is that certain features of the information that Ann

expects to receive significantly influence her optimal learning strategy. An example of this is

the bias of Bob’s news. Comparing Figures 5 and 6, both cases exhibit two extreme regions

of indifference, two adjacent regions of own-biased learning, and two intermediate regions of

opposite-biased learning. However, the specific thresholds of these intervals shift depending

on Bob’s bias and this leads to somewhat interesting predictions. For example, around the

neutral prior (p0 = 0.5), Ann prefers the right-biased source if Bob provides right-biased

news but switches to the left-biased source if Bob provides left-biased news. At moderately

certain priors (e.g., p0 =
1
3
or p0 =

2
3
) the pattern reverses: she prefers the right-biased source
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if Bob provides left-biased news and the left-biased source if Bob provides right-biased news.

Furthermore, compared to the case with no additional information, the range of priors where

Ann strictly prefers a source is larger, especially when her prior aligns with Bob’s news bias.

This exemplifies how the expectation of future information reshapes optimal learning

decisions. Many features of Ann’s optimal learning strategy extend to other settings where

agents anticipate receiving additional information beyond their control. The following sec-

tions explain how these insights generalize and the logic behind the different regions.

3 The Optimal Learning Strategy

Before introducing the full characterization of the DM’s optimal strategy, we first analyze

the problem of a DM with different levels of certainty about the state of the world (i.e., priors

closer to or further from the neutral prior). We identify key regions of priors where the DM’s

optimal choice of source follows consistent heuristics. These regions serve as building blocks

for the complete charaterization of the optimal learning strategy, outlined in Section 4.

3.1 Learning Choices of an Uncertain DM

We first analyze the problem of a DM who is relatively uncertain about the state. When

the DM’s prior is close to full uncertainty three main heuristics describe her optimal choice

of information source.

Matching the bias of the exogenous source – If the exogenous source is biased and mod-

erately informative, the DM selects a source with the same bias. A biased exogenous source

can either make an uncertain DM highly confident in the state opposing its bias (rarely) or

only slightly confident in the state aligning with it (frequently). Learning is less valuable

when the DM is very certain about the state, but more valuable when she remains uncertain.

Since the DM often reaches the interim posterior where she is still uncertain and biased to-

wards the same state as the exogenous source, this uncertain posterior dominates in shaping

her ex ante optimal choice. As the DM prefers own-biased learning from the perspective

of her interim posteriors, her ex ante optimal strategy is to select the source matching the

exogenous source’s bias.9

Figure 3 exemplifies this heuristic. A relatively uncertain DM with p0 = 0.48 expects a

right-biased exogenous source to either rarely suggest state being L (p(le) = 0.2) or, often

suggest state being R (p(re) = 0.6). Because at the interim posterior biased towards R

9If the exogenous source is unbiased, by the same logic, a fully uncertain DM (p0 = 0.5) is exactly
indifferent between sources, while a DM with nearby priors selects her own-biased source.
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the difference in value between sources is greater, and the DM expects to reach it more

frequently, she selects the right-biased source.

Indifference for highly informative exogenous sources – When the exogenous source is

significantly more informative than the sources available to the DM, the DM’s action is fully

determined by the exogenous source’s message, making further learning payoff irrelevant.

Figure 7 showcases this scenario, where both interim posteriors are so certain that additional

information provides no value, leaving the DM indifferent between sources.

EU(σL|p)− EU(σR|p)

p

−0.1

0

0.1

10.90.80.70.60.50.40.30.20.1

p0p(le) p(re)

Figure 7: Example where σe makes DM indifferent

Own-biased learning for weak exogenous sources – If the exogenous source is significantly

less informative than the available sources, the DM always follows the recommendation of

her chosen source, making the exogenous information payoff irrelevant. In this case, the

DM’s problem is equivalent to having no exogenous information, resulting in own-biased

learning. Figure 8 exemplifies this. At both interim posteriors, regardless of the selected

source, the DM would choose the action aligning with her source’s message. This means that

the exogenous source’s message does not affect her payoff relevant action in any contingency.

More generally, as long as the interim posteriors remain within the central linear segment,

the DM’s action is unaffected by σe, leading her to choose own-biased learning.

EU(σL|p)− EU(σR|p)

p

−0.1

0

0.1

10.90.80.70.60.50.40.30.20.1

p0p(le) p(re)

Figure 8: Example where σe does not affect the DM’s choice of source
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The following proposition summarizes the conditions under which each heuristic applies.

Proposition 2 Fix any σe and symmetric σL and σR. There exists ϵ > 0 s.t. ∀p0 ∈ Nϵ

(
1
2

)
,

i) If neither σe Blackwell Dominates σL and σR nor σL and σR Blackwell Dominate σe,

the DM strictly prefers the source with the same bias as σe.

ii) If σe Blackwell Dominates σL and σR, the DM is indifferent between sources.

iii) If σL and σR Blackwell Dominate σe, the DM strictly prefers own-biased learning.

Figure 9 illustrates this result. The x-axis corresponds to the probability that the ex-

ogenous source is accurate in state L, and the y-axis corresponds to the probability that it

is accurate in R. Due to our assumption that messages mean what they say –i.e., l leads

the DM to put a higher probability in state L–, without loss of generality we can restrict

attention to upper triangle above the diagonal, which covers all the space of binary signals.

Sources in the diagonal are fully uninformative, while the source at (1, 1) is fully informa-

tive. Intuitively, as we approach (1, 1) the exogenous source becomes more informative.

Right-biased sources lie above the 45-degree line, while left-biased sources fall below it.

πe(r|R)

πe(l|L)

max{πe(r|R)
πe(r|L) ,

πe(l|L)
πe(l|R)} = min{ πL(l|L)

πL(l|R)
, πL(r|R)
πL(r|L)

}

Own-BL

min{πe(r|R)
πe(r|L) ,

πe(l|L)
πe(l|R)} = max{ πL(l|L)

πL(l|R)
, πL(r|R)
πL(r|L)

}
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Figure 9: Illustration of Proposition 2

From Figure 9 one can see that Proposition 2 covers the entire space of sources. If the

exogenous source is Blackwell more informative than the sources in the DM’s choice set
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(green region), further learning becomes irrelevant, leading to indifference. If the sources in

the DM’s choice set are Blackwell more informative than the exogenous source (violet region),

the exogenous source has no impact on the DM’s incentives, and she optimally follows own-

biased learning. Otherwise, when the exogenous source is comparably informative (blue and

red regions), the DM prefers the source matching the exogenous source’s bias.

The figure also illustrates how Blackwell dominance translates to this framework. The

following definition, which formalizes the notion of informativeness of a message, will be

useful to understand this.

Definition 3 The informativeness of a source σx’s left message is given by πx(l|L)
πx(l|R)

and the

informativeness of its right message is πx(r|R)
πx(r|L) .

These likelihood ratios reflect how much the DM updates her beliefs: a higher πx(l|L)
πx(l|R)

increases the belief update towards state L upon observing l, and similarly a higher πx(r|R)
πx(r|L)

increases the belief update towards state R upon observing r. The ratios always exceed 1.

The following lemma restates Blackwell dominance in this framework: a source Blackwell

Dominates the other if and only it is more informative across all messages.

Lemma 1 A source σx Blackwell Dominates σy i.f.f.

min

{
πx(r|R)

πx(r|L)
,
πx(l|L)
πx(l|R)

}
> max

{
πy(r|R)

πy(r|L)
,
πy(l|L)
πy(l|R)

}
.

3.1.1 Learning with peers: eco-chambers

Consider two agents who are unsure about whether to vote for the left policy, L, or the right

policy, R. Each agent first chooses whether to consult a left-biased (σL) or right-biased (σR)

news outlet. From this, they obtain a recommendation of what to vote (a message). After,

they share these recommendations and each chooses what to vote. Their goal is to vote for

the correct policy. In this game, the exogenous source is endogenized to be someone else’s

chosen source.

Following Proposition 2, when the agents are sufficiently uncertain, the game has two

Nash equilibria: one where both of them choose the right-biased source, and another where

both choose the left-biased source. Even if one agent slightly favors L and the other slightly

favors R, in equilibrium, both will choose to consult the same type of biased news.

The literature in eco-chambers often explains that people within the same group tend to

consume the same type of news because they belong to groups of like-minded people, which

influences their learning in a non-rational way (Levy and Razin (2019)). Here, we offer an

alternative explanation: even rational, non-partisan individuals may optimally choose to

consume the same type of biased news with the sole goal of learning which policy is best.
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3.2 Learning Choices of a Highly Certain DM

Next, we consider the problem of a DM who is very sure about the state. When the DM’s

prior is close to full certainty she will weakly prefer own-biased learning, with indifference

between no information and any source for extremely certain priors and a strict preference

for own-biased information at slightly less certain ones. Interestingly, as the exogenous

source becomes more informative, a wider range of these priors strictly prefer to acquire

information. The intuition is as follows.

Indifference for extremely certain priors – When the DM’s prior is extremely certain, no

combination of messages from the chosen and exogenous sources can affect her payoff-relevant

action. Her action is fully determined by her prior, making her learning choice irrelevant.

As a result, the DM is indifferent between information the two information sources, and also

between those and no information at all.

Own-biased learning for very certain priors – Consider a DM so certain about the state

that information from the exogenous source alone cannot change her payoff-relevant action.

However, she is still uncertain enough that a combination of messages from both the chosen

and exogenous sources can alter her decision. In this case, the DM can still obtain valuable

information from the chosen source. Since her belief remains own-biased after any message

from the exogenous source, and she prefers own-biased learning at both interim posteriors,

it is optimal for her to choose own-biased learning from an ex ante perspective.

There are always sufficiently certain priors where the DM is indifferent between obtaining

information from any source and no information. This is due to the assumption that the

exogenous source is not fully informative about any state. As these regions of indifference are

adjacent to regions where the DM strictly prefers own-biased learning over no information,

the narrowing of the indifference region means the DM is willing to pay for information over

a larger set of certain priors. This narrowing occurs when the exogenous source becomes

more informative in the Blackwell sense. As the informativeness of the exogenous source

increases, even for more certain priors, combinations of messages from both sources can

influence the DM’s action. Thus, better exogenous information incentivizes information

acquisition. This can be seen in our illustrative example: comparing Figures 4 and 5 the

intervals of very certain priors at which Ann is indifferent between sources (in gray) are

smaller when she expects to receive additional information from Bob compared to when she

expects no information from Bob (learning in isolation).

More specifically, the set of extremely certain priors near p0 = 0 (biased towards state L)

shrinks as the informativeness of the exogenous source’s right message increases. Similarly,

the set of extremely certain priors near p0 = 1 (biased towards state R) shrinks as the

informativeness of the exogenous source’s left message increases. Hence, a highly certain
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DM who is indifferent between sources or no information will pay a positive amount for

information if the exogenous source’s opposite-biased message –one that recommends an

action against her bias– is sufficiently informative. This is because only opposite-biased

messages can alter the DM’s action, and thus only the informativeness of the exogenous

source’s opposite-biased message influences her willingness to pay for information.

The following proposition formalizes this result.

Proposition 3 Fix any σe and symmetric σL and σR. There exist cutoffs 0 < p
I
< p

O
<

1
2
< p̄O < p̄I < 1 s.t.

i) If p0 ∈ (p
I
, p

O
) ∪ (p̄O, p̄I), the DM strictly prefers own-biased learning.

ii) If p0 ∈ (0, p
I
) ∪ (p̄I , 1), the DM is indifferent between any source and no information.

As σe’s informativeness increases (in the Blackwell sense), p
I
decreases and p̄I increases.

Additionally, p̄I strictly increases with the informativeness of σe’s left message, while p
I

strictly decreases with the informativeness of σe’s right message.

The concepts of bias can also be be interpreted through the informativeness of messages.

As Lemma 2 shows, a left-biased source is more informative when sending message r than l,

while a right-biased source is more informative when sending l than r. Also note that for any

pair of symmetric sources, σL and σR, the left-biased source has the same informativeness

for message r (l) as the right-biased source does for message l (r).

Lemma 2 A signal σx is left-biased (right-biased) i.f.f. πx(l|L)
πx(l|R)

< πx(r|R)
πx(r|L)

(
πx(l|L)
πx(l|R)

> πx(r|R)
πx(r|L)

)
.

This combined with Proposition 3 implies that for a given pair of symmetric biased

exogenous sources, there exists a set of extremely certain priors for which the DM strictly

prefers own-biased learning when the exogenous source is own-biased, while being indifferent

when the exogenous source is opposite-biased. Our illustrative example reflects this. Looking

at Figure 5, when Ann expects Bob to share right-biased news, the interval of very certain

left-biased priors where she is indifferent between any source and no information is larger

than the analogous interval of right-biased priors. On the contrary, when she expects Bob to

share left-biased news (Figure 6), the interval of left-biased priors becomes the smaller one.

This is stated in the following proposition.

Proposition 4 Fix any symmetric σL and σR, and a pair of symmetric biased exogenous

sources σeL (left-biased) and σeR (right-biased). Restrict σe ∈ {σeL , σeR}. There exist thresh-

olds 0 < p
A
< p̄A < 1

2
s.t.

i) If p0 ∈ [p
A
, p̄A], the DM strictly prefers σL over no information ⇐⇒ σe = σeL.

ii) If p0 ∈ [1− p̄A, 1−p
A
], the DM strictly prefers σR over no information ⇐⇒ σe = σeR.
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3.2.1 Incentivizing information acquisition: extreme agents

Policymakers may want to incentivize information acquisition by extreme agents. This can

be useful to mitigate political polarization (Levy and Razin 2019). Informing skepticals can

also play an important role in dealing with public health crisis, such as climate change or

COVID-19 (Angelucci et al. 2021, Andre et al. 2024).

Consider an agent deciding whether to get vaccinated, L, or not, R. She can choose

whether to consult a pro-vaccine (σL) or anti-vaccine (σR) source of information for a negli-

gible positive cost c, or, opt for no information at zero cost. Additionally, the agent expects

to receive exogenous information beyond her control, σe.

A planner can perturb the exogenous information by modifying its accuracy. This can be

interpreted as being able to partially affect the information that the agent expects to receive

beyond her control, for instance, by organizing information campaigns. The perturbed ex-

ogenous information σ̃e has the structure π̃
e(l|L) = πe(l|L) + δl and π̃e(r|R) = πe(r|R) + δr,

where the planner chooses δl and δr. The planner’s goal is to maximize the probability

that the agent pays c for information, while minimizing the total perturbation, δl + δr. For

instance, because collecting and communicating information is costly.

First, knowing the agent’s prior, the planner announces the altered information structure

σ̃e. The agent then decides whether to acquire her own information or not. If she does, she

selects either σL or σR. After, she observes the messages from σ̃e and the chosen source (if

any), updates her prior and makes her decision.

Suppose the agent is so sure about the best alternative being not getting vaccinated that

in absence of the planner’s intervention she would choose not to inform herself. In that

case, the planner wants to increase the informativeness of σe’s message contradicting her

bias. That is, the planner wants to boost the informativeness of the pro-vaccine message.

But, since perturbations are costly, only until the point at which the agent becomes indiffer-

ent between paying for anti-vaccine information (the own-biased source) and opting for no

information at all. Denote this level of informativeness by I∗L.
10

The pro-vaccine message informativeness grows slower with the source’s accuracy when it

is best to get vaccinated, πe(l|L), than when not, πe(r|R). Therefore, the planner’s optimal

choice is to set δr =
πe(l|R)I∗L−πe(l|L)

I∗L
while keeping δl = 0. When designing informational

campaigns in this context, rather than generating the expectation that they are very accurate

when the vaccine works, the government might prefer to focus on improving the expected

accuracy when it does not. This would more efficiently enhance credibility of pro-vaccine

messages and incentivize skeptics to engage in independent information acquisition.

10As c → 0, this makes the agent’s prior exactly equal to p̄I in Proposition 3.
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Similarly, a media outlet that wants to penetrate the market of extreme agents, may

want to increase the informativeness available information (increasing both δr and δl) since

its expectation can incentivize those agents to inform themselves.

3.3 Learning Choices of a Moderately Certain DM

For priors that lie between highly certain and relatively uncertain, the DM may use alterna-

tive heuristics to choose her source of information. When the exogenous source is sufficiently

accurate (i.e., πe(l|L) and πe(r|R) are sufficiently large), there is a region of moderately cer-

tain priors on both sides of the neutral prior where the DM strictly prefers opposite-biased

learning –selecting the source that biased towards the state she considers less likely. This

region of is adjacent to the one of very certain priors where the DM prefers own-biased

learning. As the exogenous source becomes more informative, an even larger range of very

certain priors prefers opposite-biased learning over own-biased learning. The intuition is as

follows.

Opposite-biased learning – A sufficiently accurate exogenous source can lead a moderately

certain DM to either become so convinced about her own bias that no further information

can affect her action, or to be slightly confident in the state opposing her bias. In the latter

case, additional information is valuable because it can improve the accuracy of her action.

Consequently, the DM’s preference for information at her most uncertain interim posterior

drives her optimal choice of source. Since this posterior is biased towards the state opposite

to her prior, it is optimal for her to choose opposite-biased learning.

Figure 10 illustrates this: a right-biased DM, expecting right-biased information, prefers

to choose a left-biased source. The right-biased DM anticipates that a right-biased source

will either make her very confident that the state is R or only moderately confident that it

is L. In the first scenario, further learning is not helpful, as she is already so certain that

her action will not change. In the second scenario, additional information can be useful and

learning from the left-biased source is more valuable than from the right-biased one. Thus,

she strictly prefers the left-biased source, since it is the most valuable when she is left more

uncertain by the exogenous information.

As the exogenous source becomes less informative, it is less powerful in moving the DM’s

priors. Therefore, if the informativeness drops enough, its messages alone cannot affect the

state that the DM considers more likely. At this point, both interim posteriors become own-

biased, and following the discussion in Section 3.2, own-biased learning becomes optimal.

Therefore, as the exogenous source becomes less informative, the priors at which the DM

follows the opposite-biased learning heuristic must become more uncertain.
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Figure 10: Example where σe makes DM choose opposite-biased learning

Since the DM always remains own-biased after receiving a message that aligns with

the state she deems more likely –an own-biased message–, whether she finds it optimal to

choose the own- or opposite-biased source crucially depends on whether an opposite-biased

message of the exogenous source can affect her bias. In particular, as the informativeness of

the exogenous source’s right message increases, left-biased priors need to be less uncertain

to follow the opposite-biased learning heuristic. Similarly, as the exogenous source’s left

message informativeness increases, right-biased priors also need to be less uncertain to follow

the heuristic.

The following proposition formalizes this and provides an interpretable sufficient condi-

tion for the opposite-biased learning heuristic to arise.11

Proposition 5 Fix any σe and symmetric σL and σR. If πe(r|R)
πe(r|L)

πe(l|L)
πe(l|R)

> πL(r|R)
πL(r|L) , then, there

exist cutoffs 0 < p
O
< p

C
< 1

2
< p̄C < p̄O < 1 s.t.

i) If p0 ∈ (p
O
, p

C
) ∪ (p̄C , p̄O), the DM strictly prefers opposite-biased learning.

ii) If p0 ∈ (0, p
O
) ∪ (p̄O, 1), the DM weakly prefers own-biased learning.

As σe’s (Blackwell) informativeness increases, p
O
decreases and p̄O increases. Additionally,

p̄O strictly increases with σe’s left message informativeness and p
O

strictly decreases with

σe’s right message informativeness.

The sufficient condition in Proposition 5 requires that a measure of joint informativeness

of the left and right messages from the exogenous source exceeds a certain threshold.12 This

threshold corresponds to the highest informativeness of messages from the sources in the

DM’s choice set. Since the informativeness of a message is greater than 1, any exogenous

11The full characterization offers the exact necessary and sufficient condition.
12This joint measure is explained more in detail in Section 4, since it will be relevant for the full charac-

terization.
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source with the same structure as σL or σR would satisfy this condition, as well as any

message that Blackwell dominates them. Figure 11 illustrates this sufficient condition.
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Figure 11: Illustration of sufficient condition in Proposition 5

Using Proposition 5 we also show that for a given pair of symmetric biased exogenous

sources, there exists a set of moderately certain priors where the DM strictly prefers to

mismatch the bias of the exogenous source. The reasoning is as follows.

Mismatching the bias of the exogenous source – For moderately certain priors, a DM

expects an own-biased exogenous source to either make her very certain about her own bias

or only slightly certain that the state is opposite to her bias. Conversely, an opposite-biased

exogenous source either makes her even more confident in her bias, or slightly uncertain but

still biased towards the same state as her prior. Since her most uncertain interim posterior

has different biases in each case, her interim preferences differ at the point where information

is most valuable. As a result, from an ex ante perspective, she prefers different sources as

well. In particular, when expecting an own-biased exogenous source she strictly prefers to

choose an opposite-biased source herself; while when expecting an opposite-biased source

she strictly prefers to choose an own-biased source.

This result is summarized in the following proposition.

Proposition 6 Fix symmetric σL and σR and another symmetric pair σeL (left-biased) and

σeR (right-biased) s.t. ∀e ∈ {eL, eR} πe(r|R)
πe(r|L)

πe(l|L)
πe(l|R)

> πL(r|R)
πL(r|L) . Restrict σe ∈ {σeL , σeR}. There

exist thresholds 0 < p
M

< p̄M < 1
2
s.t. if p0 ∈ [p

M
, p̄M ] ∪ [1− p̄M , 1− p

M
],
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i) The DM strictly prefers σL over σR ⇐⇒ σe = σeR.

ii) The DM strictly prefers σR over σL ⇐⇒ σe = σeL.

3.3.1 Learning with peers: advocates

Suppose a company decides to explore a disruptive technology, R, which could significantly

boost net revenue. The alternative to adopting R is to leave things as they are L. There are

two teams in the company (e.g. operations and finance). Both agree that the new technology

seems promising compared to the status quo (moderately certain about R), but have the

chance to perform independent research before deciding. This research consists of biased

tests.13 Each team is rewarded if it supports the most profitable option.

First, each team chooses which type of test to conduct, either one that tends to favor

R, but occasionally gives a clear signal that the new technology is not worth pursuing (σR)

or one that tends to favor the status quo, but sometimes gives a strong signal that R is

worth adopting (σL).
14 After conducting their tests, the teams share their test designs and

outcomes, and then each team votes on the best course of action. Eventually, the profitability

of R becomes known (e.g., through market outcomes of competitors), and the teams receive

their payoffs based on whether they backed the right option.

For a range of moderately certain priors about R being a better choice, the two teams

coordinate by selecting opposing tests, despite their tests being independent conditional on

the best technology. Specifically, one conducts the test that favors the existing technology,

while the other conducts the one that favors the new one. Although the two teams share

the same objective and prior belief, they behave as advocates (in the sense of Dewatripont

and Tirole (1999)) for opposite alternatives.

4 Characterization

In the previous section, we introduced the main heuristics that guide the DM’s optimal

learning choices when additional information is expected. These heuristics are the building

blocks for the full characterization of her optimal strategy, which we present in this section.

To do so, we first define a measure of a source’s aggregate informativeness, which will help

in understanding different regions of the characterization.

13See Gans (2023) for a discussion on firms using biased tests or experiments to evaluate disruptive
technologies.

14The two tests are a pair of symmetric biased signals. Note that since both teams have access to the
same two types of sources, the sufficient condition in Proposition 5 holds.
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Definition 4 The index of aggregate informativeness of a source σx is the product of its

messages informativeness, namely, πx(l|L)
πx(l|R)

πx(r|R)
πx(r|L) .

This index measures the joint informativeness of a source’s left and right message, estab-

lishing a complete ordering for binary signals (unlike Blackwell’s partial ordering). Moreover,

Blackwell implies this order. In the sense that if one source Blackwell dominates another, it

will also have higher aggregate informativeness. Figure 12 plots isocurves of sources, each cor-

responding to a given level of aggregate informativeness. Movements towards (1, 1) indicate

higher values of the index. Increases in aggregate informativeness can result from a higher

probability of correct messages (e.g., moving from point C to B) or greater ”biasedness,”

that is, a larger difference in the probability of sending the correct message across states

(e.g., moving from B to A). The intuition behind the second is that a drop in probability of

a correct message in a given state can be over-compensated by the rise in informativeness of

a specific message.
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Figure 12: Isocurves for πx(l|L)
πx(l|R)

πx(r|R)
πx(r|L) = 27; πx(l|L)

πx(l|R)
πx(r|R)
πx(r|L) = 3.86; πx(l|L)

πx(l|R)
πx(r|R)
πx(r|L) = 1.5

The next three propositions outline the structure of the DM’s optimal strategy when the

exogenous source is (i) comparably informative to the sources in the DM’s choice set (Propo-

sition 7), (ii) more informative (Proposition 8), or (iii) much less informative (Proposition

9), based on the index of aggregate informativeness. Section 4.4 addresses the special case

when the exogenous source is slightly less informative. The specific threshold values that

determine the optimal strategy are detailed in the Appendix.
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4.1 Comparably informative exogenous source

Proposition 7 describes the structure of the DM’s optimal learning strategy when the exoge-

nous source is neither too informative nor too uninformative compared to those in the DM’s

choice set. Not too informative means that the exogenous source’s message alone cannot

fully determine the DM’s optimal action. The lower bound on the index of aggregate infor-

mativeness ensures both that no single source in the DM’s set can fully determine the DM’s

action, and, that the opposite-biased learning heuristic arises for some of the DM’s priors.

Proposition 7 When πL(r|R)
πL(r|L)

πR(l|L)
πR(l|R)

≥ πe(r|R)
πe(r|L)

πe(l|L)
πe(l|R)

> max
{

πL(r|R)
πL(r|L) ,

πR(r|R)
πR(r|L)

πL(l|L)
πL(l|R)

}
,

i) If p0 ∈ (0, p1) ∪ (p5, 1), the DM is indifferent between sources

ii) If p0 ∈ (p1, p2) ∪ (p3, p4), the DM chooses σL

iii) If p0 ∈ (p2, p3) ∪ (p4, p5), the DM chooses σR

where 0 < p1 < p2 < p3 < p4 < p5 < 1.

To see how this relates to the heuristics introduced in Section 3, consider an unbiased

exogenous source that meets these conditions. When the DM is almost certain of the state,

she is indifferent between sources, as no message will change her action. For intermediate

levels of certainty, where the exogenous source alone cannot determine her action but a

combination of messages can, she chooses own-biased learning. Finally, if she is uncertain

or moderately certain of the state, she chooses opposite-biased learning, since the exogenous

source’s message can alter her bias, leaving her most uncertain when it does.

If the exogenous source is biased, these regions shift, creating asymmetries that lead to

patterns like matching or mismatching the bias of the exogenous information, or valuing

information only when it is own-biased, as explained along Section 3. The natural case

where σe ∈ {σL, σR} always fits within this proposition.15 Therefore, Figures 5 and 6 follow

this structure, showing, for example, that a biased exogenous source may shift p3 above or

below 1
2
, causing an uncertain DM to chooses the source matching σe’s bias.

4.2 Very informative exogenous source

When the exogenous source is very informative compared to the DM’s choice set, meaning

its message alone fully determines the DM’s action for some priors, Proposition 8 applies.

15To see this, note that, by Lemma 2, for any pair of symmetric biased σL and σR, πL(r|R)
πL(r|L)

πR(l|L)
πR(l|R)

≥
πL(l|L)
πL(l|R)

πL(r|R)
πL(r|L)

> max
{

πL(r|R)
πL(r|L)

, πR(r|R)
πR(r|L)

πL(l|L)
πL(l|R)

}
.
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Proposition 8 When πe(r|R)
πe(r|L)

πe(l|L)
πe(l|R)

> πL(r|R)
πL(r|L)

πR(l|L)
πR(l|R)

,

i) If p0 ∈ (0, p1) ∪ (p3, p4) ∪ (p6, 1), the DM is indifferent between sources

ii) If p0 ∈ (p1, p2) ∪ (p4, p5), the DM chooses σL

iii) If p0 ∈ (p2, p3) ∪ (p5, p6), the DM chooses σR

where 0 < p1 < p2 < p3 < p4 < p5 < p6 < 1.

This structure is analogous to Proposition 7, with the addition of a central region of

indifference. For an unbiased, very informative exogenous source, the DM is indifferent

between sources both if she is extremely sure of the state or if she is relatively uncertain

about it. In the first case she is so sure, that no messages can change her action; while in the

latter the exogenous source’s messages determine her action fully, regardless of any chosen

source’s message. In any case, no source in her choice set is valuable.16 In between the two

types of indifference regions, the DM chooses own-biased learning for very certain priors and

opposite-biased learning for moderately certain ones. When the exogenous source is biased,

the regions of priors are also shifted making the structure asymmetric.

4.3 Very uninformative exogenous source

When the exogenous source is much less informative than the sources in the DM’s choice

set, Proposition 9 describes the optimal strategy.

Proposition 9 When min
{

πL(r|R)
πL(r|L) ,

πL(l|L)
πL(l|R)

πR(r|R)
πR(r|L)

}
> πe(r|R)

πe(r|L)
πe(l|L)
πe(l|R)

,

i) If p0 ∈ (0, p1) ∪ (p3, 1), the DM is indifferent between sources

ii) If p0 ∈ (p1, p2), the DM chooses σL

iii) If p0 ∈ (p2, p3), the DM chooses σR

where 0 < p1 < p2 < p3 < 1.

16Note that while in the first case, no combination of messages from the chosen and exogenous source
can affect the DM’s action (thus, they do not affect her expected utility), in the second case, they can.
However, in that case, the two types of sources (exogenous and chosen) act as substitutes. Thus, while any
of the sources in the choice set would be valuable for an uncertain DM who does not expect any additional
information; when expecting information from the exogenous source, the sources in the choice set cannot
add any value.
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In this case the DM’s optimal strategy is similar to when there is no additional informa-

tion, with indifference between sources at extreme priors and own-biased learning otherwise.

However, if the exogenous source is sufficiently informative, the source switch that happens

at 1
2
under own-biased learning shifts following Proposition 2: relatively uncertain agents

prefer to match the chosen source with the bias of the exogenous information.

4.4 Relatively uninformative exogenous source

Latly, the optimal strategy in the gap left out by Propositions 7, 8 and 9 depends on whether

the difference in informativeness between the two messages from the sources in the DM’s

choice set is large enough.17 If πL(r|R)
πL(r|L) > πL(l|L)

πL(l|R)
πR(r|R)
πR(r|L) , the difference in informativeness

between the two messages of the sources is relatively high, which can be interpreted as the

sources being sufficiently biased. In this scenario, Propositions 7 and 9 extend to cover the

gap (see the Appendix for details). Figure 13 illustrates this: the blue region corresponds to

exogenous sources leading to the structure described in Proposition 9; the violet region to

Proposition 7; and the orange to Proposition 8.
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Figure 13: Scope of Propositions 7, 8 and 9 when πL(r|R)
πL(r|L) >

πL(l|L)
πL(l|R)

πR(r|R)
πR(r|L) .

On the other hand, when the sources are sufficiently unbiased such that πL(l|L)
πL(l|R)

πR(r|R)
πR(r|L) >

17The gap is σe s.t. max
{

πL(r|R)
πL(r|L)

, πL(l|L)
πL(l|R)

πR(r|R)
πR(r|L)

}
> πe(l|L)

πe(l|R)
πe(r|R)
πe(r|L) > min

{
πL(r|R)
πL(r|L)

, πL(l|L)
πL(l|R)

πR(r|R)
πR(r|L)

}
.
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πL(r|R)
πL(r|L) , a fourth type of optimal strategy may arise. Proposition 10 describes it and the

condition under which it emerges.

Proposition 10 When πL(l|L)
πL(l|R)

πR(r|R)
πR(r|L) >

πe(r|R)
πe(r|L)

πe(l|L)
πe(l|R)

> πL(r|R)
πL(r|L) and

πL(l|L)
πL(l|R)

> max
{

πe(l|L)
πe(l|R)

, π
e(r|R)

πe(r|L)

}
,

i) If p0 ∈ (0, p1) ∪ (p6, 1), the DM is indifferent between sources

ii) If p0 ∈ (p1, p2) ∪
(
p3,

1
2

)
∪ [p4, p5], the DM chooses σL

iii) If p0 ∈ (p2, p3) ∪
(
1
2
, p4

)
∪ (p5, p6), the DM chooses σR

where 0 < p1 < p2 < p3 <
1
2
< p4 < p5 < p6 < 1.

Proposition 10 applies when the exogenous source’s aggregate informativeness falls within[
πL(l|L)
πL(l|R)

πR(r|R)
πR(r|L) ,

πL(r|R)
πL(r|L)

]
and none of its messages are too informative. In this case, the struc-

ture is similar to that of Proposition 7, with the addition of a central region of own-biased

learning for uncertain priors. This creates four regions of priors on each side of 1
2
.

A DM with a prior slightly below 1
2
(who believes that state L is slightly more likely)

chooses σL (own-biased learning). As she becomes more confident in state L, she will eventu-

ally choose σR (opposite-biased learning). However, with further certainty, she returns to σL

(own-biased learning). Finally, when she is extremely certain of L, she becomes indifferent

between sources. This structure works symmetrically for priors on the right side of 1
2
.

The key feature of the exogenous sources that lead to this type of strategy is that none of

their messages are sufficiently informative to significantly influence the choice of source for an

uncertain DM, but they are still informative enough to affect the decisions of a moderately

certain or highly certain one. In the remaining cases, the optimal learning strategy follows

the structure of Proposition 9. This is showcased in Figure 14.

29



πe(r|R)

πe(l|L)

P8

πR(l|L)
πR(l|R)

πL(r|R)
πL(r|L)

= πe(r|R)
πe(r|L)e

πe(l|L)
πe(l|R)

πL(l|L)
πL(l|R)

πR(r|R)
πR(r|L)

= πe(r|R)
πe(r|L)e

πe(l|L)
πe(l|R)

P7

P9’

P9’

P9

πL(r|R)
πL(r|L)

= πe(r|R)
πe(r|L)e

πe(l|L)
πe(l|R)

P10

0

0.1

1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

σL

σR

Figure 14: Scope of Propositions 7, 8 and 9 when πL(l|L)
πL(l|R)

πR(r|R)
πR(r|L) >

πL(r|R)
πL(r|L) .

5 Discussion

This paper highlights the importance of expected information in shaping optimal information

choices. By incorporating anticipated external information into a standard learning model,

we identify a novel mechanism that explains why individuals may consume both like-minded

and opposing news sources, aligning with empirical findings in the social media and news

consumption literature.

Throughout the paper we also identify rich ways in which the optimal choice of news

bias depends on the type of expected information. This leads to interesting predictions for

applications to learning with peers and incentivizing information acquisition. Below, we

discuss some additional insights about these issues.

5.1 Learning with peers

Consider, as in Sections 3.1.1 and 3.3.1, a scenario where two identical agents first choose one

of two biased information sources, ∀i ∈ {1, 2}, σi ∈ {σL, σR} then share their information

and update their beliefs before making an individual decision (e.g., voting). Using our

characterization of the optimal learning strategy, we determine how each agent responds to

30



the other’s choice and identify the Nash Equilibria (NE) of this information choice game.

Proposition 11 For any pair of symmetric biased sources, σL, σR, there exist thresholds

0 < p1 < p2 < p3 < p4 < p5 <
1
2
such that:

i) If p0 ∈ (0, p1) ∪ (1− p1, 1), the set of NE are {σL, σR}2.

ii) If p0 ∈ (p1, p2)∪ (p5, 1− p5)∪ (1− p2, 1− p1), the set of NE are (σL, σL) and (σR, σR).

iii) If p0 ∈ (p2, p3) ∪ (1− p5, 1− p4), the unique NE is (σL, σL).

iv) If p0 ∈ (p3, p4) ∪ (1− p4, 1− p3), the set of NE are (σL, σR) and (σR, σL).

v) If p0 ∈ (p4, p5) ∪ (1− p3, 1− p2), the unique NE is (σR, σR).

This result implies that when agents have low or relatively high certainty (p0 ∈ (p1, p2)∪
(p5, 1− p5)∪ (1− p2, 1− p1)), they tend to choose the same type of news bias in equilibrium,

while moderately certain agents (p0 ∈ (p3, p4) ∪ (1− p4, 1− p3)) may select different biases.

For extremely certain agents (p0 ∈ (0, p1) ∪ (1 − p1, 1)), indifference between sources

makes any pair of informational choices an equilibrium; however, as soon as there is some

cost to acquire information those agents would choose not to inform themselves. A related

result is true for agents with relatively high certainty (p0 ∈ (p1, p2) ∪ (1 − p2, 1 − p1)) who

choose the same type of information in equilibrium: as soon as there is some cost to acquire

information the two possible equilibrium informational choices are to either both choose the

own-biased source, or, both choose no information. At the remaining priors agents have

a dominant strategy to either choose σL or σR and, thus, the equilibrium is unique: both

choose the same source but not due to the choice of their peer.

5.2 Incentivizing information acquisition

Now consider a planner who selects the exogenous information σe to maximize information

acquisition among agents with heterogenous priors. As the receiver in Section 3.2.1, each

agent decides whether to pay a small cost to acquire information from one of two biased

sources, knowing that the planner will also provide additional information.

Given the distribution of priors, the planner publicly announces the structure of the

additional information (e.g., the type of information campaign). Each agent then decides

whether to acquire information at a negligible cost (c → 0) and, if so, chooses between σL

or σR. The agent then uses her chosen information (if any) and the planner’s additional

information to make a final decision (e.g., whether to get vaccinated or what to vote).
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Even if additional information is costless for the planner, he faces a trade-off: enhancing

the informativeness of σe incentivizes highly certain agents to acquire information but may

deter uncertain agents from doing so. As the informativeness of σe increases (in the Blackwell

sense), highly certain agents are more likely to acquire information, while highly uncertain

agents may abstain if the additional source becomes too informative (Proposition 8). Once

this happens, the range of central priors opting out expands as σe’s informativeness increases.

From the characterization of the DM’s optimal strategy, the planner will always prefer

an exogenous source with a minimum level of aggregate informativeness –πe(r|R)
πe(r|L)

πe(l|L)
πe(l|R)

≥
πL(r|R)
πL(r|L)

πR(l|L)
πR(l|R)

. Below this level, increasing the informativeness of σe’s messages encourages

more agents to acquire information without discouraging others. Beyond this threshold, the

planner’s optimal choice depends on the distribution of priors: with a high proportion of

uncertain agents less informative exogenous information may be preferred, while if many

agents are highly certain, greater informativeness may be better, as it increases information

acquisition by the extreme agents.

When most agents have the same bias, a similar trade-off arises at the message level. For

example, if most are anti-vaccine, increasing the informativeness of σe’s pro-vaccine message

encourages those who are highly skeptical but could discourage those with only mild doubts.
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Appendix A.

Proof of Proposition 1. For any p0 we construct σe and σ′
e that makes σx and σy optimal

respectively.
By the assumed condition, ∃p such that EU(σx|p) > EU(σy|p)
Case 1:
If p < p0 construct a binary signal, σe, with posteriors p and 1 (π(l|L) = 1, solve for π(r|R)).∑

s∈{l,r} P(s|p0)
(
EU(σx|p(se))− EU(σy|p(se))

)
=

P(l|p0)
(
EU(σx|p)− EU(σy|p)

)
︸ ︷︷ ︸

>0

+P(r|p0)
(
EU(σx|1)− EU(σy|1)

)
︸ ︷︷ ︸

0

> 0

By observation 1, this implies EU(σx, σe|p0) > EU(σy, σe|p0)
Case 2:
If p > p0 construct a binary signal, σe, with posteriors p and 0 (π(r|R) = 1, solve for π(l|L)).
By same logic as in case 1, EU(σx, σe|p0) > EU(σy, σe|p0)
Case 3:
If p = p0 construct a binary signal that is just noise (σe will not influence beliefs and at current
belief σx is optimal).
Construction for σ′

e follows same procedure.
Note: this proof is generalizable to the finite state, general action setting. The sketch is the

following. Construct an exogenous signal with one more signal realization than states. Signal real-
izations of the exogenous signal are perfectly informative about the state for all but one realization.
For that realization, the signal induces the belief for which the “desired” signal is strictly preferred.

Proof of Lemma 1. σx Blackwell dominates σy ⇐⇒ ∃σz s.t. the distribution of posteriors
from the bundle (σy, σz) is the same as the distribution of posteriors from σx.

Any such σz can be written as a binary signal with realizations lz and rz and it should break
each of the posteriors from σy into σz’s posteriors, that is,

p(ly) = p(rx)γ + p(lx)(1− γ), γ = p(ly)πz(r|R) + (1− p(ly))πz(r|L)

p(ry) = p(rx)λ+ p(lx)(1− λ), λ = p(ry)πz(r|R) + (1− p(ry))πz(r|L)

solving for the structure of σz:

πz(r|R) =
πx(l|L)(p0πx(r|R) + (1− p0)π

x(r|L))
(πx(l|L)− πx(l|R))p0

; πz(l|L) = πx(r|R)(p0π
x(l|R) + (1− p0)π

x(l|L))
(πx(l|L)− πx(l|R))(1− p0)

.

For γ and λ are within the interval [0, 1] i.f.f. πy(l|L)
πy(l|R) <

πx(l|L)
πx(l|R) and πy(r|R)

πy(r|L) < πx(r|R)
πx(r|L) .

This will be used in the next proofs. For any pair of symmetric biased sources σL, σR:

EU(σL|p)− EU(σR|p) =



0 p < πL(r|L)
πL(r|L)+πL(r|R)

πL(r|R)p− πL(r|L)(1− p) p ∈ ( πL(r|L)
πL(r|L)+πL(r|R)

, πR(r|L)
πR(r|L)+πR(r|R)

)

(πL(l|L)− πL(r|R))(1− 2p) p ∈ ( πR(r|L)
πR(r|L)+πR(r|R)

, πL(l|L)
πL(l|L)+πL(l|R)

)

πL(r|L)p− πL(r|R)(1− p) p ∈ ( πL(l|L)
πL(l|L)+πL(l|R)

, πR(l|L)
πR(l|L)+πR(l|R)

))

0 πR(l|L)
πR(l|L)+πR(l|R)

< p
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Proof of Proposition 2. If p0 is sufficiently near 1
2 , p0 ∈ ( πR(r|L)

πR(r|L)+πR(r|R)
, πL(l|L)
πL(l|L)+πL(l|R)

). Thus,

if σe is so weak that both p(le) and p(re) remain within ( πR(r|L)
πR(r|L)+πR(r|R)

, πL(l|L)
πL(l|L)+πL(l|R)

), which is

true for p0 =
1
2 i.f.f. πL(l|L)

πL(l|R)
> max

{
πe(l|L)
πe(l|R) ,

πe(r|R)
πe(r|L)

}
, then,

EU(σL, σe|p0)− EU(σR, σe|p0) =

P(le|p0)
(
EU(σL|p(le))− EU(σR|p(le))

)
︸ ︷︷ ︸

(πL(l|L)−πL(r|R))(1−2p(le))

+P(re|p0)
(
EU(σL|p(re))− EU(σR|p(re))

)
︸ ︷︷ ︸

(πL(l|L)−πL(r|R))(1−2p(re))

.

Plugging in for the probabilities and the interim posteriors,

EU(σL, σe|p0)− EU(σR, σe|p0) = (πL(l|L)− πL(r|R))(1− 2p0)

which means that own-biased learning is strictly optimal.

If, instead, σe is so strong that both p(le) < πL(r|L)
πL(r|L)+πL(r|R)

and p(re) > πR(l|L)
πR(l|L)+πR(l|R)

, which

is true for p0 = 1
2 i.f.f. min

{
πe(l|L)
πe(l|R) ,

πe(r|R)
πe(r|L)

}
> πL(r|R)

πL(r|L) , then, EU(σL, σe|p0) − EU(σR, σe|p0) = 0,

meaning that the DM is indifferent between sources.
The remaining cases are the following:

1. p(le) ∈ ( πL(r|L)
πL(r|L)+πL(r|R)

, 12) and p(re) > πR(l|L)
πR(l|L)+πR(l|R)

2. p(le) < πL(r|L)
πL(r|L)+πL(r|R)

and p(re) ∈ (12 ,
πR(l|L)

πR(l|L)+πR(l|R)
)

3. p(le) ∈ ( πR(r|L)
πR(r|L)+πR(r|R)

, 12) and p(re) ∈ ( πL(l|L)
πL(l|L)+πL(l|R)

, πR(l|L)
πR(l|L)+πR(l|R)

)

4. p(le) ∈ ( πL(r|L)
πL(r|L)+πL(r|R)

, πR(r|L)
πR(r|L)+πR(r|R)

) and p(re) ∈ (12 ,
πL(l|L)

πL(l|L)+πL(l|R)
)

5. p(le) ∈ ( πL(r|L)
πL(r|L)+πL(r|R)

, πR(r|L)
πR(r|L)+πR(r|R)

) and p(re) ∈ ( πL(l|L)
πL(l|L)+πL(l|R)

, πR(l|L)
πR(l|L)+πR(l|R)

)

When p0 = 1
2 , d(p(l

e), p0) > d(p(re), p0) i.f.f. σe is right-biased and d(p(le), p0) < d(p(re), p0)
i.f.f. σe is left-biased. Therefore, by symmetry, in cases 1 and 3 σe is left-biased while in 2 and 4 it
is right-biased.

In 1 and 2 it is easy to see that at prior 1
2 the source that matches σe’s bias is strictly preferred,

since at the most extreme interim posterior the DM is indifferent between sources, e.g., in case 1

EU(σL, σe|p0)− EU(σR, σe|p0) = P(le|p0)
(
EU(σL|p(le))− EU(σR|p(le))

)
︸ ︷︷ ︸

>0

> 0.

Next, we show that in case 3 σL is strictly preferred. Suppose not, then

P(le|p0)
(
EU(σL|p(le))− EU(σR|p(le))

)
︸ ︷︷ ︸

(πL(l|L)−πL(r|R))(1−2p(le))

+P(re|p0)
(
EU(σL|p(re))− EU(σR|p(re))

)
︸ ︷︷ ︸

πL(r|L)p(re)−πL(r|R)(1−p(re))

≤ 0

⇐⇒ πe(r|R)

πe(r|L)
≤ πL(l|L)

πL(l|R)
.
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However, this contradicts that p(re) > πL(l|L)
πL(l|L)+πL(l|R)

.

Similarly, in 4, σR is strictly preferred. Suppose not, then

P(le|p0)
(
EU(σL|p(le))− EU(σR|p(le))

)
︸ ︷︷ ︸

πL(r|R)p(le)−πL(r|L)(1−p(le))

+P(re|p0)
(
EU(σL|p(re))− EU(σR|p(re))

)
︸ ︷︷ ︸

(πL(l|L)−πL(r|R))(1−2p(re))

≥ 0

⇐⇒ πL(l|L)
πL(l|R)

≥ πe(l|L)
πe(l|R)

,

which contradicts that p(le) < πR(r|L)
πR(r|L)+πR(r|R)

.

In the remaining case (5),

EU(σL, σe|p0)− EU(σR, σe|p0) =

P(le|p0)
(
EU(σL|p(le))− EU(σR|p(le))

)
︸ ︷︷ ︸

πL(r|R)p(le)−πL(r|L)(1−p(le))

+P(re|p0)
(
EU(σL|p(re))− EU(σR|p(re))

)
︸ ︷︷ ︸

πL(r|L)p(re)−πL(r|R))(1−p(re))

which is positive i.f.f. (πe(l|L) − πe(r|R))(πL(r|R) − πL(r|L)) > 0 and negative i.f.f. (πe(l|L) −
πe(r|R))(πL(r|R)−πL(r|L)) < 0. Because πL(r|R)−πL(r|L) > 0, σL is strictly preferred whenever
σe is left-biased (i.e., πe(l|L)− πe(r|R) > 0) and σR when σe is right-biased.

Since all functions are continuous in p0, this with Lemma 1 proves the statement.
Proof of Proposition 3. Since p(le) < p(re),

p(le), p(re) <
πL(r|L)

πL(r|L) + πL(r|R)
⇐⇒ p0 <

πL(r|L)πe(r|L)
πL(r|L)πe(r|L) + πL(r|R)πe(r|R)

=: p
I
;

p(le), p(re) >
πR(l|L)

πR(l|R) + πR(l|L)
⇐⇒ p0 >

πR(l|L)πe(l|L)
πR(l|L)πe(l|L) + πR(l|R)πe(l|R)

=: p̄I .

In both of these cases, EU(σL|p) − EU(σR|p) = 0 at both interim posteriors p ∈ {p(le), p(re)}.
Thus, EU(σL, σe|p0)− EU(σR, σe|p0) = 0 and the DM is indifferent at those priors.

Next, it is left to show that ∃ϵ > 0 s.t. ∀p0 ∈ (p
I
, p

I
+ ϵ), EU(σL, σe|p0) − EU(σR, σe|p0) > 0

and ∃δ > 0 s.t. ∀p0 ∈ (p̄I − ϵ, p̄I), EU(σL, σe|p0)− EU(σR, σe|p0) < 0.

Let p0 = p
I
+ ϵ. For any sufficiently small ϵ > 0, p(re) ∈

(
πL(r|L)

πL(r|L)+πL(r|R)
, 12

)
and p(le) <

πL(r|L)
πL(r|L)+πL(r|R)

, which implies that EU(σL, σe|p0)− EU(σR, σe|p0) > 0, since

P(le|p0)
(
EU(σL|p(le))− EU(σR|p(le))

)
︸ ︷︷ ︸

0

+P(re|p0)
(
EU(σL|p(re))− EU(σR|p(re))

)
︸ ︷︷ ︸

>0

> 0.

Similarly, for p0 = p̄I − δ and any sufficiently small δ > 0, p(re) > πR(l|L)
πR(l|R)+πR(l|L) and p(le) ∈

(12 ,
πR(l|L)

πR(l|R)+πR(l|L)), which implies that EU(σL, σe|p0)− EU(σR, σe|p0) < 0.

The comparative statics follow from p
I
= 1

1+
πL(r|R)πe(r|R)

πL(r|L)πe(r|L)

, p̄I =
πR(l|L)πe(l|L)

πR(l|R)πe(l|R)

πR(l|L)πe(l|L)

πR(l|R)πe(l|R)
+1

and Lemma 1.

Proof of Lemma 2. First, we want to show that σx being left-biased implies πx(l|L)
πx(l|R) < πx(r|R)

πx(r|L) .
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Suppose not, then πx(l|L)− πx(r|R) > 0 while

πx(l|L)
πx(l|R)

≥ πx(r|R)

πx(r|L)
⇐⇒ πx(l|L)− πx(r|R) ≥ (πx(l|L)− πx(r|R))(πx(l|L) + πx(r|R)).

But this implies that 1 ≥ πx(l|L) + πx(r|R), which is a contradiction.

Next, we show that πx(l|L)
πx(l|R) <

πx(r|R)
πx(r|L) implies that σx is left-biased. Suppose not, then

πx(l|L)
πx(l|R)

<
πx(r|R)

πx(r|L)
⇐⇒ πx(l|L)− πx(r|R) < (πx(l|L)− πx(r|R))(πx(l|L) + πx(r|R)),

while πx(l|L)−πx(r|R) ≤ 0. This implies that either 0 < 0 or 1 > πx(l|L)+πx(r|R), both reaching
a contradiction. The proof for σx right-biased is symmetric.
Proof of Proposition 4. By σeL , σeR symmetric, πeL (r|R)

πeL (r|L) = πeR (l|L)
πeR (l|R) and πeL (l|L)

πeL (l|R) = πeR (r|R)
πeR (r|L) .

Therefore, using the proof of Proposition 3 and Lemma 2, for a given pair of σL, σR,

0 < p
I
(σeL) < p

I
(σeR) <

1

2
< p̄I(σ

eL) < p̄I(σ
eR) < 1.

Also by the proof of Proposition 3 and continuity, ∃ϵ ∈ (0, p
I
(σeR)−p

I
(σeL)) s.t. ∀p0 ∈ (p

I
(σeL), p

I
(σeL)+

ϵ), EU(σL, σeL |p0)− EU(σR, σeL |p0) > 0 while EU(σL, σeR |p0)− EU(σR, σeR |p0) = 0. Moreover,
p0 < p

I
(σeR) also implies that EU(σL, σeR |p0) = EU(σR, σeR |p0) = 0.

Similarly, ∃δ ∈ (0, p̄I(σ
eR) − p̄I(σ

eL)) s.t. ∀p0 ∈ (p̄I(σ
eR) − δ, p̄I(σ

eR)), EU(σL, σeR |p0) −
EU(σR, σeR |p0) < 0 while EU(σL, σeL |p0) = EU(σR, σeL |p0) = 0.

Note that we can set p
A
= p

I
(σeL) since

1− p
I
(σeL) = 1− 1

1 + πL(r|R)πeL (r|R)
πL(r|L)πeL (r|L)

=

πR(l|L)πeR (l|L)
πR(l|R)πeR (l|R)

πR(l|L)πeR (l|L)
πR(l|R)πeR (l|R)

+ 1
= p̄I(σ

eR).

Finally, setting p̄A = p
I
(σeL) + γ s.t. γ > 0 is sufficiently small to satisfy both the requirement for

ϵ and δ (by continuity, it always exists) completes the proof.

Proof of Proposition 5. First, let p
O
be the prior at which p(re) = 1

2 , that is, pO = πe(r|L)
πe(r|L)+πe(r|R)

and p̄O the prior at which p(le) = 1
2 , that is, p̄O = πe(l|L)

πe(l|L)+πe(l|R) . Note that 0 < p
O
< 1

2 < p̄O < 1.

Since ∀p0 < p
O
, EU(σL|p) − EU(σR|p) ≥ 0 ∀p ∈ {p(le), p(re)} and ∀p0 < p̄O, EU(σL|p) −

EU(σR|p) ≤ 0 ∀p ∈ {p(le), p(re)}, at those priors, the DM weakly prefers own-biased learning
(strictly in the intervals (p

I
, p

O
) and (p̄O, p̄I)).

Next, we show that πe(l|L)
πe(l|R)

πe(r|R)
πe(r|L) > πL(r|R)

πL(r|L) implies that for any sufficiently small ϵ > 0 and

δ > 0, if p0 = p
O
+ ϵ, EU(σL, σe|p0) − EU(σR, σe|p0) < 0; and if p0 = p̄O − δ, EU(σL, σe|p0) −

EU(σR, σe|p0) > 0.
By continuity, since when p0 = p

O

πe(l|L)
πe(l|R)

πe(r|R)

πe(r|L)
>

πL(r|R)

πL(r|L)
=⇒ p(le) <

πL(r|L)
πL(r|L) + πL(r|R)

,

for a small enough ϵ > 0, when p0 = p
O
+ ϵ: (i) p(re) ∈ (12 ,

πR(l|L)
πR(l|L)+πR(l|R)

), which implies that

EU(σL|p(re)) − EU(σR|p(re)) < 0, and (ii) p(le) < πL(r|L)
πL(r|L)+πL(r|R)

, implying EU(σL|p(le)) −
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EU(σR|p(le)) = 0. All in all, this implies that EU(σL, σe|p0)− EU(σR, σe|p0) < 0.
Similarly, since when p0 = p̄O

πe(l|L)
πe(l|R)

πe(r|R)

πe(r|L)
>

πL(r|R)

πL(r|L)
=⇒ p(re) >

πR(l|L)
πR(l|L) + πR(l|R)

,

for a sufficiently small δ > 0, when p0 = p̄O−δ, p(le) ∈ ( πL(r|L)
πL(r|L)+πL(r|R)

, 12) and p(re) > πR(l|L)
πR(l|L)+πR(l|R)

,

together leading to EU(σL, σe|p0)− EU(σR, σe|p0) > 0.

The comparative statics follow from rewritting p
O
= 1

1+
πe(r|R)
πe(r|L)

, p̄O =
πe(l|L)
πe(l|R)

πe(l|L)
πe(l|R)

+1
and Lemma 1.

Proof of Proposition 6. By σeL , σeR symmetric, the proof of Proposition 5 and Lemma 2, for
a given pair of σL, σR, 0 < p

O
(σeL) < p

O
(σeR) < 1

2 < p̄O(σ
eL) < p̄O(σ

eR) < 1.

Also by the proof of Proposition 5 and continuity, when πe(l|L)
πe(l|R)

πe(r|R)
πe(r|L) > πL(r|R)

πL(r|L) ,

∃ϵ ∈ (0, p
O
(σeR)−p

O
(σeL)) s.t. ∀p0 ∈ (p

O
(σeL), p

O
(σeL)+ϵ), EU(σL, σeL |p0)−EU(σR, σeL |p0) < 0

while EU(σL, σeR |p0)− EU(σR, σeR |p0) > 0. Similarly, ∃δ ∈ (0, p̄O(σ
eR)− p̄O(σ

eL)) s.t.
∀p0 ∈ (p̄O(σ

eR) − δ, p̄O(σ
eR)), EU(σL, σeR |p0) − EU(σR, σeR |p0) > 0 while EU(σL, σeL |p0) −

EU(σR, σeL |p0) < 0.
Setting p

M
= p

O
(σeL), since 1 − p

O
(σeL) = p̄O(σ

eR), and p̄M = p
O
(σeL) + γ s.t. γ > 0 is

sufficiently small to satisfy both the requirement for ϵ and δ completes the proof.

Proofs of Section 4 to be added.
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